1. Принимаются параметры приточного воздуха:
- температура tп=20о С;
- энтальпия hп=43,1 кДж/кг;
- относительная влажность 60%.
2. По справочным данным определяется продолжительность каждого интервала стояния энтальпии наружного воздуха hн, превышающей величину hв (табл.4.)
Таблица 4. Продолжительность каждого интервала стояния энтальпии наружного воздуха, превышающей величина hв
Энтальпия наружного воздуха hН, кДж/кг |
44,5 |
47,4 |
50,4 |
53,3 |
56,6 |
60,4 |
64,2 |
67,5 |
71,7 |
Продолжительность ее стояния n, ч |
296 |
261 |
215 |
171 |
129 |
77 |
45 |
10 |
3 |
3. Принимается температура охлажденной в испарителе воды, обеспечивающей требуемый луч процесса в кондиционируемом помещении, tx1=12о C, соответственно температура кипения хладагента t0=tx1-3=12-3=9оC. Данная температура остается неизменной для всех расчетных режимов.
4. По h-d диаграмме определяем температуру мокрого термометра для каждого расчетного состояния наружного воздуха tм =16 ºС, температуру охлажденной в вентиляторной градирне воды принимается равной
tw1=tм+4ºС = 16 + 4 = 20 ºС, (36)
а температура конденсации tк=tw1+ (4-6) 0C = 20 + 5 = 25 ºС (37)
5. Принимаем максимальную величину холодопроизводительности машины Q0max=0,5 МВт, соответствующая максимальной энтальпии наружного воздуха hнмакс = 71,7кДж/кг
Для других режимов холодопроизводительность рассчитывается пропорционально отношению энтальпий
(hн - h11x1) / (hнмакс-h11x1), (38)
где h11x1 - энтальпия насыщенного воздуха при температуре tx1.
6. Рассчитываем характеристики режима работы ХМ для каждого интервала энтальпий hн: Q0, Qк, tk, λ, ηi,ηe,Ga, Vт, Na,Ne,ε, и оформляем в табличном виде (табл.5)
Величины |
Интервалы температур | ||||||||
44,5 |
47,4 |
50,4 |
53,3 |
56,6 |
60,4 |
64,2 |
67,5 |
71,7 | |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1. Продолжительность интервала |
296 |
261 |
215 |
171 |
129 |
77 |
45 |
10 |
3 |
2. Температура мокрого термометра tм, оС |
16 |
17 |
19 |
20 |
21 |
22,1 |
23 |
24 |
25 |
3. Температура охлажденной в вентиляторной градирне выды tw1 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
4. Температура конденсации tk, ºС |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
5. Температура конденсации tK, оС | |||||||||
6. Тепловая нагрузка Qк, МВт |
0,161 |
0, 207 |
0,255 |
0,302 |
0,354 |
0,416 |
0,477 |
0,532 |
0,601 |
7. Холодопроизводительность испарителя Qи, МВт |
0,139 |
0,178 |
0,218 |
0,256 |
0,300 |
0,350 |
0,401 |
0,444 |
0,500 |
8. Температура испарения tи, оС | |||||||||
9. Степень повышения давления p |
1,7 |
1,73 |
1,75 |
1,8 |
1,83 |
1,85 |
1,90 |
1,93 |
1,95 |
10. Коэффициент подачи l |
0,833 |
0,832 |
0,831 |
0,829 |
0,828 |
0,826 |
0,824 |
0.823 |
0,822 |
11. Расход хладогента через испаритель Gд, кг/ч |
0,97 |
1,26 |
1,56 |
1,86 |
2, 19 |
2,57 |
2,96 |
3,29 |
3,73 |
12. Удельная адиабатическая работа компрессора lад, кДж/кг |
10 |
11 |
12 |
12,50 |
13 |
13,50 |
14 |
14,50 |
15 |
13. Адиабатическая мощность компрессора Nад, МВт |
0,01 |
0,014 |
0,019 |
0.023 |
0,028 |
0,035 |
0.041 |
0,048 |
0,056 |
14. Индикаторная мощность компрессора, Ni, МВт |
0,013 |
0,019 |
0,026 |
0,032 |
0,039 |
0,047 |
0,057 |
0,065 |
0,077 |
15. Действительный объём, описываемый поршнями компрессора, Vд, м3/ч |
0,046 |
0,059 |
0,074 |
0,087 |
0,103 |
0,121 |
0,139 |
0,155 |
0,175 |
16. Теоретический объём, описываемый поршнями Vт, м3/ч |
0,055 |
0,071 |
0,089 |
0,106 |
0,124 |
0,146 |
0,168 |
0,188 |
0,213 |
17. Мощность трения, Nтр, МВт |
0,002 |
0,003 |
0,004 |
0,004 |
0,005 |
0,006 |
0,007 |
0,008 |
0,009 |
18. Эффективная мощность компрессора Nе, МВт |
0,016 |
0,022 |
0,029 |
0,036 |
0,044 |
0,053 |
0,063 |
0,073 |
0,085 |
19. Механический КПД компрессора hl мех |
0,86 |
0,87 |
0,88 |
0,88 |
0,89 |
0,89 |
0,89 |
0,9 |
0,9 |
20. Эффективный коэффициент КПД hе |
8,962 |
8,137 |
7,433 |
7,09 |
6,823 |
6,573 |
6,314 |
6,096 |
5,868 |
21. Эффективный холодильный коэффициент ε |
8,962 |
8,137 |
7,433 |
7,09 |
6,823 |
6,573 |
6,314 |
6,096 |
5,868 |
Эскизный расчет опоры №2.
Опоры приняты массивные из «шок-блоков» с заполнением тела опоры монолитным бетоном на фундаментах из буронабивных столбов диаметром 1.5 м. Ригель принят применительно к типовому проекту серии 3.503.1–102.2. Ригели компонуются из двух блоков, объединенных между собой и с буронабивными столбами путем омоноли ...
Краткое описание технологической схемы производства и основное оборудование
Технологический процесс производства неводостойких гипсовых вяжущих из природного сырья состоит из следующих основных переделов:
1. предварительная подготовка сырья (дробление, сушка и тонкое измельчение)
2. тепловая обработка подготовленного сырья (дегидратация)
3. дополнительный помол при необходимости ...
Результаты расчета тепловых потерь
Номер помещения и его назначение
Температура внутреннего воздуха tint, oC
Наружная ограждающая конструкция
Разность температур tint-text, oC
Поправочный коэффициент n
Коэффициент теплопередачи ограждающей конструкции k, Вт/м2оС
Добавочные потери теплоты b
Множитель для учета дополн ...