1. Принимаются параметры приточного воздуха:
- температура tп=20о С;
- энтальпия hп=43,1 кДж/кг;
- относительная влажность 60%.
2. По справочным данным определяется продолжительность каждого интервала стояния энтальпии наружного воздуха hн, превышающей величину hв (табл.4.)
Таблица 4. Продолжительность каждого интервала стояния энтальпии наружного воздуха, превышающей величина hв
Энтальпия наружного воздуха hН, кДж/кг |
44,5 |
47,4 |
50,4 |
53,3 |
56,6 |
60,4 |
64,2 |
67,5 |
71,7 |
Продолжительность ее стояния n, ч |
296 |
261 |
215 |
171 |
129 |
77 |
45 |
10 |
3 |
3. Принимается температура охлажденной в испарителе воды, обеспечивающей требуемый луч процесса в кондиционируемом помещении, tx1=12о C, соответственно температура кипения хладагента t0=tx1-3=12-3=9оC. Данная температура остается неизменной для всех расчетных режимов.
4. По h-d диаграмме определяем температуру мокрого термометра для каждого расчетного состояния наружного воздуха tм =16 ºС, температуру охлажденной в вентиляторной градирне воды принимается равной
tw1=tм+4ºС = 16 + 4 = 20 ºС, (36)
а температура конденсации tк=tw1+ (4-6) 0C = 20 + 5 = 25 ºС (37)
5. Принимаем максимальную величину холодопроизводительности машины Q0max=0,5 МВт, соответствующая максимальной энтальпии наружного воздуха hнмакс = 71,7кДж/кг
Для других режимов холодопроизводительность рассчитывается пропорционально отношению энтальпий
(hн - h11x1) / (hнмакс-h11x1), (38)
где h11x1 - энтальпия насыщенного воздуха при температуре tx1.
6. Рассчитываем характеристики режима работы ХМ для каждого интервала энтальпий hн: Q0, Qк, tk, λ, ηi,ηe,Ga, Vт, Na,Ne,ε, и оформляем в табличном виде (табл.5)
Величины |
Интервалы температур | ||||||||
44,5 |
47,4 |
50,4 |
53,3 |
56,6 |
60,4 |
64,2 |
67,5 |
71,7 | |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1. Продолжительность интервала |
296 |
261 |
215 |
171 |
129 |
77 |
45 |
10 |
3 |
2. Температура мокрого термометра tм, оС |
16 |
17 |
19 |
20 |
21 |
22,1 |
23 |
24 |
25 |
3. Температура охлажденной в вентиляторной градирне выды tw1 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
4. Температура конденсации tk, ºС |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
5. Температура конденсации tK, оС | |||||||||
6. Тепловая нагрузка Qк, МВт |
0,161 |
0, 207 |
0,255 |
0,302 |
0,354 |
0,416 |
0,477 |
0,532 |
0,601 |
7. Холодопроизводительность испарителя Qи, МВт |
0,139 |
0,178 |
0,218 |
0,256 |
0,300 |
0,350 |
0,401 |
0,444 |
0,500 |
8. Температура испарения tи, оС | |||||||||
9. Степень повышения давления p |
1,7 |
1,73 |
1,75 |
1,8 |
1,83 |
1,85 |
1,90 |
1,93 |
1,95 |
10. Коэффициент подачи l |
0,833 |
0,832 |
0,831 |
0,829 |
0,828 |
0,826 |
0,824 |
0.823 |
0,822 |
11. Расход хладогента через испаритель Gд, кг/ч |
0,97 |
1,26 |
1,56 |
1,86 |
2, 19 |
2,57 |
2,96 |
3,29 |
3,73 |
12. Удельная адиабатическая работа компрессора lад, кДж/кг |
10 |
11 |
12 |
12,50 |
13 |
13,50 |
14 |
14,50 |
15 |
13. Адиабатическая мощность компрессора Nад, МВт |
0,01 |
0,014 |
0,019 |
0.023 |
0,028 |
0,035 |
0.041 |
0,048 |
0,056 |
14. Индикаторная мощность компрессора, Ni, МВт |
0,013 |
0,019 |
0,026 |
0,032 |
0,039 |
0,047 |
0,057 |
0,065 |
0,077 |
15. Действительный объём, описываемый поршнями компрессора, Vд, м3/ч |
0,046 |
0,059 |
0,074 |
0,087 |
0,103 |
0,121 |
0,139 |
0,155 |
0,175 |
16. Теоретический объём, описываемый поршнями Vт, м3/ч |
0,055 |
0,071 |
0,089 |
0,106 |
0,124 |
0,146 |
0,168 |
0,188 |
0,213 |
17. Мощность трения, Nтр, МВт |
0,002 |
0,003 |
0,004 |
0,004 |
0,005 |
0,006 |
0,007 |
0,008 |
0,009 |
18. Эффективная мощность компрессора Nе, МВт |
0,016 |
0,022 |
0,029 |
0,036 |
0,044 |
0,053 |
0,063 |
0,073 |
0,085 |
19. Механический КПД компрессора hl мех |
0,86 |
0,87 |
0,88 |
0,88 |
0,89 |
0,89 |
0,89 |
0,9 |
0,9 |
20. Эффективный коэффициент КПД hе |
8,962 |
8,137 |
7,433 |
7,09 |
6,823 |
6,573 |
6,314 |
6,096 |
5,868 |
21. Эффективный холодильный коэффициент ε |
8,962 |
8,137 |
7,433 |
7,09 |
6,823 |
6,573 |
6,314 |
6,096 |
5,868 |
Тепловой расчёт двухтрубного теплопровода канальной прокладки участка ВС
Наружные диаметры трубопроводов на этом участке равен 0,48 м
Определяем наружные диаметры изоляции
Определяем предварительные размеры канала и вычерчиваем схему
Выбираем стандартный размер канала
A=1800 мм
H=900мм
Определяем коэффициент теплопроводности изоляции
Определяем сопротивлен ...
Определение расчетных расходов воды на пожаротушение
Населенный пункт: так как водопровод в поселке проектируется объединенным, то при количестве жителей 28000 человек принимаем два одновременных пожара при трех этажной застройки с расходом воды 25 л/с на один пожар
Qпоспож.нар. = 2•25=50 л/c
Расчет воды на внутреннее пожаротушение в поселке при наличии пра ...
Описание объекта
Объект проектирования – жилое здание на 12 квартир, в городе Тверь. Планировка этажей однотипная, подвал неотапливаемый и расположен под всем зданием.
Проектирование систем водопровода и канализации производится во взаимной увязке.
Снабжение здания водой – от городской сети водопровода. Приготовление горя ...