tk = 39,6 + = 48,23 ºС
6. Рассчитываем теплопроизводительность установки по формуле (13)
(13)
кВт = 0,2 МВт,
количество тепла, выработанное теплонасосной установкой (14)
(14)
где где ni - продолжительность соответствующего интервала, ч
МВт·ч
и количество тепла, полученное из теплосети за рассчитываемый период (15)
(15)
МВт·ч
7. Принимая температуру перегрева хладагента на выходе из компрессора (точка 2 термодинамического цикла на рис.2) на 20 градусов выше температуры конденсации, по диаграмме состояния или по таблицам находится удельная теплопроизводительность хладагента qk.
При tк = 60 ºС qk = 592 - 450 = 142 кДж/кг
При tк = 48,23 ºС qk = 588 - 438 = 150 кДж/кг
8. По (16) определяется расход хладагента Ga в данном цикле.
(16)
= 1,41 кг/с
9. Решением уравнения (17) находится температура испарения хладагента tu. Целесообразно использовать графо - аналитический способ, а именно: принимая температуру испарения ниже температуры tвэр1 (на 2-3 градуса и более), а также величину перегрева на всасывании в компрессор 15°С, по диаграмме состояния хладагента находится удельная холодопроизводительность qu, а затем проверяется тождественность уравнения (17). При "небалансе" не более 3-5% точность найденной величины tu может считаться приемлемой.
(17)
(18)
, (19)
где Ku - коэффициенты теплопередачи в испарителе и конденсаторе теплонасосной установки, 500 Вт
Fu - его теплообменная поверхность,
Gwu - расход воды через испаритель
= 2, 19
Еи = 1 - е 2,19 = 0,89
Тогда по уравнению (18), получается:
Для интервала (-10…-5 ºС) принимаем температуру испарения +13 ºС
qи = 557 - 450 = 107 кДж/кг
1,41 · 107 9,55 · 4,19 · (16 - 13) · 0,89
150,87 106,98
Н = · 100 % = 1,32 %
10. По температурным границам рассчитываемого цикла tk и tu, принятой величине перегрева на всасывании уточняем действительный расход хладагента (20), кг / с
(20)
= 1,41 кг/с
находим коэффициент подачи l (21)
(21)
(22)
где π - степень повышения давления,
РК, РО - давление конденсации и кипения хладагента
,
Удельная адиабатная работа компрессора
lад = h2 - h1 = 592-568 = 24 кДж/кг (23)
Адиабатная мощность компрессора
Nад = Gд ·lад = 1,41· 24 = 33,84 кВт = 0,033 МВт (24)
Индикаторная мощность компрессора
Ni = (25)
где ηi - индикаторный КПД, равный для обычных величин π 0,73
Ni = =0,05 МВт
Действительный объем, описываемый поршнями компрессора:
Vд = Gд · υ1, м3/с (26)
где υ1 - объемная масса хладагента при всасывании в компрессор =0,036 м3/кг
Vд = 1,41· 0,036 = 0,05 м3/с
Теоретический объем, описываемый поршнями компрессора
Vт = =
= 0,06 м3/с (27)
Расход мощности на трение
Nтр = Ртр · Vт (28)
где Ртр = 40 · 103 Па - давление трения
Nтр = 40 · 103 · 0,06 = 0,0024 МВт
определяем эффективную мощность компрессора Ne (23)
кВт; (29)
где Ni - индикаторная мощность, МВт (25),
- расход мощности на трение, МВт (28)
МВт
Обоснование скорости потока
Для каждого частного потока определяют длину сменной захватки исходя из условия полной загрузки механизма.
(10)
где: к – коэффициент перевода размерностей, соответственно при:
пм/см к=1,0
м2/см к=Bi
м3/см к= Bi hi
т/см к= Bi hi ρi
1. Дополнительный слой основания.
-Послойное разравнивание песк ...
Окна и двери
Окна предусматривается для обеспечения естественной освещенности основных помещений и возможности визуального контакта с окружающей средой. Размеры окон приняты в соответствии с нормативными требованиями естественной освещенности и стандартами. В связи с тем, что t = -27ºC окна принимаются с двойным ос ...
Определение несущей способности сваи
Несущую способность Fd висячей забивной сваи сплошного квадратного сечения, работающей на вертикальную нагрузку, следует определять как сумму расчетных сопротивлений грунтов оснований под нижним концом сваи и на ее боковой поверхности по формуле:
Fd = RF + uSfili , (4.2)
где R - расчетное сопротивление гр ...