Режим отопления
Страница 4

Механический КПД компрессора

= 0,05/0,0524 = 0,95 (30)

Эффективный КПД компрессора

ηе = ηi · ηмех = 0,73 · 0,95 = 0,7 (31)

11. Рассчитываем коэффициент преобразования теплового насоса m

= = 3,82 (32)

12. Для каждого последующего интервала температур наружного воздуха повторяются пункты 5-11 (табл.3)

13. Определяется годовой расход электроэнергии компрессором теплового насоса

, (33)

где Nei - эффективная мощность компрессора в текущем интервале температур наружного воздуха ni,

i - количество рассчитываемых интервалов работы теплонасосной установки.

0,0524 · 637 + 0,048 · 1222 + 0,022 · 2906 = 155,97 МВт·ч

14. Определяется расход электроэнергии на привод насосов за отопительный период А по (34).

(34)

где - продолжительность работы теплонасосной установки в отопительном периоде.

= 31,92 МВт·ч

15. Находится суммарное количество теплоты, выработанное теплонасосной установкой за отопительный период по (35)

= 127,4+ 178,9 + 116,3 = 422,6 МВт·ч (35)

Таблица 3. Результаты расчётов ТНУ в режиме системы теплоснабжения.

Величины

Интервалы температур

-32

30

-30

25

-25

20

-20

15

-15

10

-10

5

-5

0

0

8

1

2

3

4

5

6

7

8

9

1. Отопительная нагрузка Qо, МВт

1, 19

1,07

0,95

0,83

0,71

0,6

0,48

0,29

2. Температура сетевой воды в подающем трубопроводе t1, оС

106,71

99,36

91,87

84,22

76,4

69,03

60,74

46,85

3. Температура сетевой воды в обратном трубопроводе t20, оС

76,96

72,61

68,12

63,47

58,65

54,03

48,74

39,6

4. Температура воды на выходе из конденсатора tWK, оС

62,71

62,02

61,03

60,56

59,78

59,04

58,2

56,74

5. Температура конденсации tK, оС

60

60

48,23

6. Теплопроизводительность конденсатора Qк, МВт

0,2

0, 204

0,123

7. Количество тепла, выработанного теплонасосной установкой Qтну, МВт×ч

127,4

178,9

116,3

8. Количество тепла, отпущенного из теплосети Qт, МВт×ч

3

20,2

93,14

180,1

295,4

254,8

9. Холодопроизводительность испарителя Qи, МВт

0,150

0,181

0,121

11. Температура испарения tи, оС

13

10

7

12. Степень повышения давления p

3,37

3,60

4,08

13. Коэффициент подачи l

0,76

0,75

0,73

14. Расход хладогента через испаритель Gд, кг/ч

1,41

3,42

5,3

15. Удельная адиабатическая работа компрессора lад, кДж/кг

24,0

25,0

26,0

16. Адиабатическая мощность компрессора Nад, МВт

0,03

0,08

0,16

17. Индикаторная мощность компрессора, Ni, МВт

0,05

0,1

0,18

18. Действительный объём, описываемый поршнями компрессора, Vд, м3/ч

0,05

0,095

0,147

19. Теоретический объём, описываемый поршнями Vт, м3/ч

0,06

0,125

0, 193

20. Мощность трения, Nтр, МВт

0,002

0,005

0,007

21. Эффективная мощность компрессора Nе, МВт

0,052

0,105

0,187

22. Механический КПД компрессора

hl мех

0,96

0,95

0,96

23. Эффективный коэффициент преобразования m

3,82

1,94

0,66

Страницы: 1 2 3 4 5

Определение требуемого напора
H тр = H геом + ΣHtot + hf H геом = h цок + h эт ( n -1) + h зал + 2 (6) h зал = h пром +0,5 (7) h цок = h 1эт - h земли (8) ΣHtot = Σhl *(1+ k ),к=0,3 (9) ΣHtot -суммарные потери напора в сети; hf - свободный напор у диктующего прибора [прил 2, 1]; hзал – глубина зало ...

Теплофизические характеристики материалов в конструкции
1. При tв=18˚С и относительной влажности φв=58 %, в помещении нормальный режим влажности. #G0 Режим Влажность внутреннего воздуха, %, при температуре   до 12 °С св. 12 до 24 °С св. 24 °С Сухой До 60 До 50 До 40 Нормальный Св. 60 до 75 ● Св. ...

Определение нагрузок на раму здания
Нагрузки на раму здания определяются с учетом следующих коэффициентов: γn=0,95 – коэффициент надежности по назначению здания, исходя из требований СНиП 2.01.07-85 Нагрузки и воздействия (класс ответственности здания – II); γf>1 – коэффициент надежности по нагрузке. Постоянные нагрузки. Нагру ...

Главное меню


Copyright © 2024 - All Rights Reserved - www.smartarchitect.ru