Обработка результатов научных исследований
Страница 2

где: - максимальное и минимальное значение измерительной величины или погрешности.

Если вместо эмпирических частот y

1 …

yn

принять их вероятности

р1 … р

n

,

то это даст важную характеристику распределения – математическое ожидание:

Для непрерывных случайных величин математическое ожидание определяется интегралом:

т.е. оно равно действительному значению хд

наблюдаемых событий. Таким образом, если систематические погрешности измерений полностью исключены, то истинное значение измеряемой величины равно математическому ожиданию, а соответствующая ему абсцисса называется центром распределения. Площадь, расположенная под кривой распределения (рис.1), соответствующая единице, т.к. кривая охватывает все результаты измерений. Для одной и той же площади можно построить большое количество кривых распределения, т.е. они могут иметь различное рассеяние. Мерой рассеяния (точности измерений) является дисперсия или среднеквадратичное отклонение. Таким образом, дисперсия характеризует рассеивание случайной величины по отношению к математическому ожиданию и вычисляется по формуле:

Важной характеристикой теоретической кривой распределения является среднеквадратичное отклонение:

Коэффициент вариации

применяется для сравнения интенсивности рассеяния в различных совокупностях, определяется в относительных единицах (

k

в

<

1).

Основной задачей статистики является подбор теоретических кривых по имеющемуся эмпирическому закону распределения. Пусть в результате n измерений случайной величины получен ряд ее значений х1, х2, х3, …., х

n

. При первичной обработке таких рядов их вначале группируют в интервалы и устанавливают для каждого из них частоты

и . По значениям х

i

и строят ступенчатую гистограмму частот и вычисляют характеристики эмпирической кривой распределения. Основными характеристиками эмпирического распределения являются:

среднеарифметическое значение:

дисперсия:

Значения этих величин соответствуют величинам и теоретического распределения.

Уравнение соответствует функции нормального распределения при m(x)0 (рис. 2, а). Если совместить ось ординат с точкой m, т.е. m(x)=0 (рис.2,б), и принять , то знаки нормального распределения описываются зависимостью:

Для оценки рассеяния обычно пользуются величиной . Чем меньше , тем меньше рассеяние, т.е. большинство наблюдений мало отличается друг от друга (рис.3). С увеличением рассеяние возрастает, вероятность появления больших погрешностей увеличивается, а максимум кривой распределения (ордината), равная уменьшается. Поэтому величину при или называют мерой точности.

Страницы: 1 2 3 4 5

Способ получения
Основной способ производства полиэтиленовых труб непрерывная шнековая экструзия на специальных экструзионных линиях. Полиэтиленовое сырье поступает из накопительной емкости в бункер экструдера, где захватывается шнеком и поступает в цилиндрическую камеру нагрева. Сам шнек имеет участки захвата, уплотнения ...

Общие сведения
Участок автомобильной дороги км 285+000 - км 291+650 относится к числу хорошо освоенных в транспортном отношении территорий. В настоящее время существующая транспортная сеть района представлена железнодорожным и автомобильным видами транспорта. В транспортной сети района автомобильному транспорту принадлежи ...

Указания по организации труда
1) Работы по устройству основания из ПГС организуют в 1 смену. Работы ведем на одной захватке. На каждую смену организуем бригаду рабочих в таком составе: машинист экскаватора 6 разряда-1, помощник машиниста экскаватора 5 разряда-1, водитель третьего класса-4, машинист автогрейдера 6 разряда-1, машинист ка ...

Главное меню


Copyright © 2024 - All Rights Reserved - www.smartarchitect.ru